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Abstract

The present note is concerned with the derivation of the characteristic equation of a cantilevered, visco-elastic bending

beam (Kelvin–Voigt model), carrying a tip mass. Further, it is attempted to represent this continuous system by an

‘‘equivalent’’ spring-damper-mass system. Then, the ‘‘first’’ eigenvalues of these systems are calculated and tabulated for a

wide range of the non-dimensional mass parameter.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

A very recent study of two of the present authors published in this journal was concerned with the
eigencharacteristics of an axially vibrating visco-elastic rod carrying a tip mass and its representation by a
spring-damper-mass system [1]. The present work is to some extent, the counterpart of the previous work for
the bending vibrations. After having derived and solved the characteristic equation of a visco-elastic
(Kelvin–Voigt model) cantilever, carrying a tip mass, it is attempted to represent the system mentioned above,
by an ‘‘equivalent’’ spring-damper-mass system.

It is hoped that especially the characteristic equation established and the numerical results collected in tables
can be helpful to design engineers working in this field.
2. Theory

The mechanical system under consideration is shown in Fig. 1. It consists of a cantilevered visco-elastic
bending beam carrying a tip mass M. It is assumed that its visco-elastic properties fit the Kelvin–Voigt model.
The bending rigidity, length, mass per unit length and visco-elastic constant of the beam material are EI, L, m

and a, respectively.
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Fig. 1. Visco-elastic bending beam with a tip mass.
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Equation of motion of the visco-elastic beam can be found in the literature [2] as

EIwIVðx; tÞ þ aIwIV:

ðx; tÞ þm €wðx; tÞ ¼ 0, (1)

where I is the moment of inertia of the beam section, wðx; tÞ represents the lateral displacement of the beam at
the location x and time t. Primes and dots denote partial derivatives with respect to x and t, as usual. The
corresponding boundary conditions are obtained from Ref. [2] as special case in the following form:

wð0; tÞ ¼ 0, (2)

w0ð0; tÞ ¼ 0, (3)

EIw00ðL; tÞ þ aIw00
�
ðL; tÞ ¼ 0, (4)

EIw000ðL; tÞ þ aIw000
�
ðL; tÞ �M €wðL; tÞ ¼ 0, (5)

where the first two are obvious and the third and fourth conditions express the moment and force balances at
the tip.

Assuming a solution in the form

wðx; tÞ ¼W ðxÞelt, (6)

where W(x) and l denote the amplitude function and an eigenvalue, both being complex in general, and
substitution into Eqs (1)–(5) leads to an ordinary differential equation of order four for W ðxÞ with
corresponding four boundary conditions.

The substitution of the general solution of the differential equation mentioned above:

W ðxÞ ¼ C1e
bx þ C2e

�bx þ C3e
ibx þ C4e

�ibx, (7)

in which C1–C4 are unknown coefficients, into the corresponding boundary conditions leads to a set of four
linear homogeneous equations for the unknowns C1–C4 . Setting the determinant of the coefficients matrix to
zero, gives after lengthy rearrangements:

4þ e�b̄ 1� ð1þ iÞaM b̄
� �

e�ib̄ þ 1� ð1� iÞaM b̄
� �

eib̄
n o

þ eb̄ 1þ ð1� iÞaM b̄
� �

e�ib̄ þ 1þ ð1þ iÞaM b̄
� �

eib̄
n o

¼ 0, ð8Þ

where the following abbreviations are used:

b4 ¼ �
ml2

EI þ aIl
; b̄ ¼ bL; aM ¼

M

mL
(9)

and i denotes the imaginary unit, as usual.
Anticipating that b̄ should be a complex number in general, due to the damped character of the system, it is

reasonable to rearrange further in order to obtain a more compact form of Eq. (8).
It can be shown after some rearrangements, that the above equation can be brought into the following form:

1þ cos b̄ cosh b̄þ aM b̄ðcos b̄ sinh b̄� sin b̄ cosh b̄Þ ¼ 0. (10)

A look at the frequency equation of the cantilevered elastic beam with a tip mass in Ref. [3]
reveals the surprising fact that the characteristic equation of the visco-elastic beam with the tip
mass is formally the same. However, one must be aware of the fact that the definition of b̄ in the elastic
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and visco-elastic cases are:

b̄
2
¼ o

ffiffiffiffiffiffiffiffiffi
mL4

EI

s
(11)

and

b̄
2
¼ �i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mL4l2

EI þ aIl

s
, (12)

respectively, where o denotes the eigenfrequency of the elastic system, whereas l is the eigenvalue of the visco-
elastic system.

As in Refs. [1,3] one can think of representing the vibrational system in Fig. 1 by an ‘‘equivalent’’ single
degree-of-freedom system. It is reasonable to make use of the simplified model in Fig. 2 for this purpose, where

k ¼ 3EI=L3; c ¼ 3aI=L3. (13)

d is the ratio of the mass to be added to the tip, to the mass of the beam itself.
The constant d is not yet known and will be determined requiring that the ‘‘first’’ eigenvalue of the

continuous system in Fig. 1 is equal to the eigenvalue of the model in Fig. 2.
Before proceeding further, it is quite in order to represent the system in Fig. 2 in terms of the non-

dimensional parameters as in Fig. 3, where a non-dimensional damping parameter

d̄ ¼
aI

mL4o0

(14)

is introduced, with o2
0 ¼ EI=mL4.

The characteristic equation of the model in Fig. 3 is simply:

ðaM þ dÞl̄
�2
þ 3d̄l̄

�
þ 3 ¼ 0, (15)

where l̄
�
¼ l�=o0, l̄

�
being the non-dimensional eigenvalue. On the other side, after having obtained the

parameter b̄ by solving numerically the characteristic Eq. (10), in order to obtain the eigenvalue l of the
continuous system, relationship (12) has to be used, which leads to the following quadratic equation:

l̄
2
þ d̄b̄

4
l̄þ b̄

4
¼ 0 (16)

with the non-dimensional eigenvalue: l̄ ¼ l=o0.
δ

αM

3

3d
−

Fig. 3. Non-dimensionalized version of the model in Fig. 2.

M

δ(mL)

k

c

Fig. 2. Equivalent spring-damper-mass system for obtaining the ‘‘first’’ eigenvalue of the continuous system in Fig. 1.



ARTICLE IN PRESS
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The solutions of the characteristic equations in Eqs. (15) and (16) yield

l̄
�
¼
�3d̄ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9d̄

2
� 12ðaM þ dÞ

q
2ðaM þ dÞ

, (17)

l̄ ¼
�d̄b̄

4
� b̄

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d̄
2
b̄
4
� 4

q
2

. (18)

Requiring l̄
�
¼ l̄ leads to:

aM þ d ¼
3d̄l̄þ 3

d̄b̄
4
l̄þ b̄

4
. (19)

Numerical evalutions reveal that the right side of Eq. (19) is independent of d̄ such that it can be set d̄ ¼ 0,
corresponding to the undamped case. Hence, Eq. (19) results in

d ¼
3

b̄
4
� aM . (20)

It is in order to note that this is the same formula as in Ref. [3], written here in different notations.
In conjunction with Fig. 3, expression (20) can be interpreted in the manner that the factor d by which the

own mass of the bending beam must be multiplied in order to be taken into account as is the same as in the
undamped case. b̄ denotes the first root of Eq. (10) with respect to b̄, for the corresponding aM value.

Let us return to the eigenvalue pair given in Eq. (17) which can be written as

l̄
�
¼ �

3d̄

2ðaM þ dÞ
� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12ðaM þ dÞ � 9d̄

2
q

2ðaM þ dÞ
. (21)

Recalling the fact noticed previously, that d does not depend on d̄, it is seen from above that the real part of
the eigenvalues of the damped system depends upon d̄ linearly, whereas the imaginary part decreases, as d̄

increases. All these trends are similar to those observed in Ref. [1] for the axially vibrating visco-elastic rod
with a tip mass.
3. Numerical evaluations

In Table 1, for a wide range of the non-dimensional mass parameter aM, the corresponding b̄1 values are
listed which are the ‘‘first’’ roots of the transcendental equation (10). Although the roots of this equation can
be found in Ref. [4] for several values of the mass parameter, they are given here, for the sake of completeness,
for the same range of aM as used in Ref. [1].

The eigenvalues of the continuous system in Fig. 1 and the discrete model in Fig. 3 are given in Table 2 for
d̄ ¼ 0:1 and 0.5, respectively, which are complex, due to the presence of the internal damping.

The complex numbers l̄0:1 in the second column are eigenvalues of the continuous system in Fig. 1 for
d̄ ¼ 0:1, determined from Eq. (18). The complex numbers l̄

�

0:1 which are the roots of the characteristic
equation (15), given in Eq. (17), i.e., eigenvalues of the discrete model in Fig. 3, are exactly the same as l̄0:1.
Therefore, they are not repeated in a separate column. The corresponding eigenvalues for d̄ ¼ 0:5 are denoted
as l̄0:5 and l̄

�

0:5, respectively, and given in the third column of Table 2. The non-dimensional factor d in the last
column is calculated from Eq. (20).

The exact agreement of l̄ and l̄
�
values in each column justifies the fact that the spring-damper-mass system

in Fig. 3 yields the ‘‘first’’ eigenvalue of the continuous system in Fig. 1 exactly.
As stated in the previous section, the d value is the same, irrespective of d̄. It is clearly seen from Table 2 that

d approaches d ¼ 33/140 ¼ 0.235714, if aM tends to infinity.
An inspection of the second and third columns reveals further that the absolute values of the real parts of

the eigenvalues in the third column are five times of those in the second column, as expected. Further, the
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Table 1

b̄1 values which are the ‘‘first’’ roots of the transcendental Eq. (10) for a wide range of the non-dimensional mass parameter aM

aM b̄1

0 1.875104

0.001 1.873233

0.002 1.871372

0.003 1.869519

0.004 1.867674

0.005 1.865838

0.006 1.864011

0.007 1.862193

0.008 1.860382

0.009 1.858581

0.01 1.856787

0.02 1.839294

0.03 1.822562

0.04 1.806538

0.05 1.791171

0.06 1.776415

0.07 1.762230

0.08 1.748578

0.09 1.735426

0.1 1.722742

0.2 1.616400

0.3 1.536143

0.4 1.472408

0.5 1.419964

0.6 1.375669

0.7 1.337499

0.8 1.304087

0.9 1.274462

1 1.247917

2 1.076196

3 0.981231

4 0.917358

5 0.870021

6 0.832826

7 0.802429

8 0.776877

9 0.754937

10 0.735782

15 0.666137

20 0.620512

25 0.587187

30 0.561242

35 0.540175

40 0.522549

45 0.507469

50 0.494342

55 0.482753

60 0.472407

65 0.463083

70 0.454612

75 0.446863

80 0.439732

85 0.433137

90 0.427008

95 0.421289

100 0.415934

200 0.349861
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Table 1 (continued )

aM b̄1

300 0.316166

400 0.294240

500 0.278283

600 0.265889

700 0.255840

800 0.247443

900 0.240265

1000 0.234021

Table 2

Collection of the ‘‘first’’ eigenvalues of the system in Figs. 1 and 3 and d values for the same range of aM as in Table 1; d̄ ¼ 0:1 and 0.5

aM l̄0:1 ¼ l̄
�

0:1 l̄0:5 ¼ l̄
�

0:5
d

0 �0.61811873.461256i �3.09059171.676488i 0.242672

0.001 �0.61565573.454573i �3.07827671.684435i 0.242643

0.002 �0.61321173.447927i �3.06605671.692195i 0.242614

0.003 �0.61078673.441317i �3.05393071.699774i 0.242585

0.004 �0.60837973.434743i �3.04189771.707176i 0.242557

0.005 �0.60599173.428206i �3.02995571.714407i 0.242528

0.006 �0.60362173.421704i �3.01810471.721472i 0.242500

0.007 �0.60126973.415237i �3.00634371.728373i 0.242473

0.008 �0.59893473.408806i �2.99467071.735117i 0.242445

0.009 �0.59661773.402409i �2.98308471.741707i 0.242418

0.01 �0.59431773.396046i �2.97158671.748148i 0.242390

0.02 �0.57223573.334253i �2.86117371.805098i 0.242130

0.03 �0.55169673.275598i �2.75847871.850598i 0.241889

0.04 �0.53254873.219836i �2.66273871.887003i 0.241665

0.05 �0.51465773.166744i �2.57328471.916075i 0.241456

0.06 �0.49790673.116122i �2.48953171.939165i 0.241262

0.07 �0.48219273.067790i �2.41096171.957322i 0.241079

0.08 �0.46742373.021585i �2.33711571.971384i 0.240908

0.09 �0.45351872.977360i �2.26758871.982018i 0.240748

0.1 �0.44040372.934980i �2.20201671.989771i 0.240597

0.2 �0.34132372.590357i �1.70661371.978364i 0.239467

0.3 �0.27841772.343253i �1.39208771.905372i 0.238759

0.4 �0.23500872.155212i �1.17504271.821934i 0.238275

0.5 �0.20327372.006026i �1.01636571.741397i 0.237924

0.6 �0.17907171.883973i �0.89535571.667261i 0.237657

0.7 �0.16000971.781734i �0.80004571.600034i 0.237447

0.8 �0.14460971.694483i �0.72304671.539282i 0.237278

0.9 �0.13191071.618888i �0.65955071.484316i 0.237140

1 �0.12125971.552570i �0.60629471.434428i 0.237023

2 �0.06707171.156253i �0.33535571.108584i 0.236435

3 �0.04635070.961697i �0.23175270.934506i 0.236212

4 �0.03541070.840801i �0.17705070.822711i 0.236094

5 �0.02864870.756395i �0.14323970.743261i 0.236021

6 �0.02405470.693182i �0.12027070.683092i 0.235972

7 �0.02073070.643559i �0.10364970.635495i 0.235936

8 �0.01821370.603263i �0.09106570.596629i 0.235909

9 �0.01624170.569698i �0.08120570.564115i 0.235888

10 �0.01465470.541177i �0.07327270.536394i 0.235871

15 �0.00984570.443630i �0.04922670.441000i 0.235820

20 �0.00741370.384964i �0.03706370.383247i 0.235793

25 �0.00594470.344737i �0.02972070.343505i 0.235778

30 �0.00496170.314953i �0.02480570.314014i 0.235766
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Table 2 (continued )

aM l̄0:1 ¼ l̄
�

0:1 l̄0:5 ¼ l̄
�

0:5
d

35 �0.00425770.291758i �0.02128570.291012i 0.235760

40 �0.00372870.273032i �0.01864070.272421i 0.235754

45 �0.00331670.257504i �0.01658070.256991i 0.235748

50 �0.00298670.244355i �0.01493070.243917i 0.235746

55 �0.00271670.233035i �0.01357870.232655i 0.235743

60 �0.00249070.223155i �0.01245170.222821i 0.235741

65 �0.00229970.214434i �0.01149770.214138i 0.235739

70 �0.00213670.206661i �0.01067870.206396i 0.235737

75 �0.00199470.199676i �0.00996970.199437i 0.235736

80 �0.00186970.193355i �0.00934770.193138i 0.235734

85 �0.00176070.187599i �0.00879970.187401i 0.235733

90 �0.00166270.182328i �0.00831270.182146i 0.235732

95 �0.00157570.177478i �0.00787570.177310i 0.235731

100 �0.00149670.172995i �0.00748270.172839i 0.235730

200 �0.00074970.122400i �0.00374670.122345i 0.235722

300 �0.00050070.099959i �0.00249870.099930i 0.235720

400 �0.00037570.086576i �0.00187470.086557i 0.235718

500 �0.00030070.077441i �0.00149970.077427i 0.235717

600 �0.00025070.070696i �0.00125070.070686i 0.235717

700 �0.00021470.065454i �0.00107170.065446i 0.235717

800 �0.00018770.061228i �0.00093770.061221i 0.235716

900 �0.00016770.057727i �0.00083370.057721i 0.235716

1000 �0.00015070.054766i �0.00075070.054761i 0.235716
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imaginary parts of the corresponding eigenvalues in case for d̄ ¼ 0:5 are less than those for d̄ ¼ 0:1, this trend
being more apparent for smaller aM values.

4. Conclusion

The present note is concerned first with the derivation of the characteristic equation of a laterally vibrating
visco-elastic beam obeying the Kelvin–Voigt model, carrying a tip mass. The interesting fact to be noted is that
the characteristic equation of the visco-elastic beam with a tip mass is found to be formally the same as of the
elastic beam with the tip mass. Further, it is attempted to represent the original continuous system by an
‘‘equivalent’’ spring-damper-mass system. It is hoped that especially the characteristic equation established
and the tables given, might be helpful to design engineers working in this field.
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